Great Mathematicians – Euclid

The Mathematics Of Euclid
The Greek Maths legend – Euclid is known throughout history as among the greatest mathematicians and in fact one of his names is the father of geometry. You might not be aware that the standard geometry all people are taught in college is actually called Euclidian Geometry. In Ancient Greece, he worked tirelessly and Euclid accumulated all the knowledge developed in mathematics during that time. From his studies he created his famous work, entitled ‘The Elements’. It is thought that Euclid likely attended Plato’s academy in Athens before moving into Alexandria, in Egypt. In this time, the city had a big library and whats more it even had ready access to papyrus made it the centre for the productions of books. The papyrus is one of the numerous reasons why excellent minds such as Heron of Alexandria and Euclid established themselves in Alexandria and the Nile delta.

Nowadays Euclid, is even more famous and his books and theorems are an essential part of any mathematics education.  You’ll find him studied at every levels from elementary to I last saw a copy in Dublin, in the University College.


Euclid’s Elements consisted of thirteen novels covering a vast body of mathematical expertise, crossing arithmetic, geometry and number theory. The fundamental arrangement of the components starts with Euclid launching axioms. From here he created 465 propositions, progressing from his first recognized principles into the unknown in several of measures, a process he called the Artificial strategy. He looked at mathematics as a whole, but was especially focused on geometry and this specific field formed the foundation of his work. Euclid’s Axioms were based upon 10 statements which could be accepted as mathematical truths. He named these axioms his postulates and split them into two groups of five, these very first set common to all math, the second specific to geometry.

To see some great explanations of these geometric principles search through YouTube or the Open University Maths lessons.  These were recently broadcast on the BBC so you can pick them up on iPlayer – this post shows how to pick up BBC iPlayer from Ireland but it should work from anywhere in the world too.

Many of those postulates appear into be self explanatory into us, but Euclid worked on the principle that no axiom might be accepted without proof. Euclid’s First Group of Postulates – these Common Notions: Things that are equal to these same thing are equal to one another. If equals are added onto equals, the results are equal. If equals are subtracted from equals, these remains are equal. Things which coincide with one another are equal to one another. A straight line can be drawn between any two points.

Any finite straight line can be extended indefinitely in a straight line. For any line segment, it’s potential to draw a circle utilizing the section as these radius and one end point as these centre. If a straight line falling across two other straight lines leads to these sum of these angles on these same side less than two right angles, then these two straight lines. These lines if extended indefinitely, meet on these same side as these side where these angle amounts are less than two right angles.

Euclid felt that anyone who can read and comprehend words could comprehend his notions and postulates but, into make sure, he included 23 definitions of common words, like point and line to ensure that there might be no semantic errors.

Facebooktwittergoogle_plusredditpinterestlinkedinmailby feather